

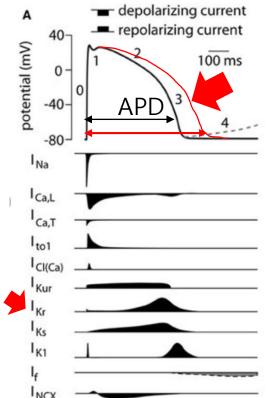
Risks and Benefits of Amiodarone in Infants

Song Mi Kyoung

Seoul National University Children's Hospital Korean Heart Rhythm Society COI Disclosure

Name of First Author: Song Mi Kyoung The authors have no financial conflicts of interest to disclose concerning the presentation

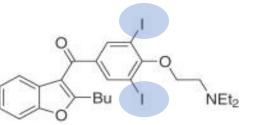
Risks and Benefits of Amiodarone in Infants


- Identify the mechanism of action of amiodarone.
- Outline the indications for amiodarone use.
- Adverse event profile for patients receiving amiodarone therapy
- Amiodarone indications in infants
- Drug adverse event in infants

Mechanism of Action

- Class III antiarrhythmic drug
 - block multiple K channels \rightarrow prolonged APD
 - \rightarrow prolonged QT interval
- Blocks beta-adrenergic receptor, Ca++, and Na+ chan.
 - → decreased automatism of SA node, AV node conduction velocity
- \rightarrow inhibits ectopic pacemaker automaticity
- \rightarrow decreased myocyte excitability

Ventricular Action potential

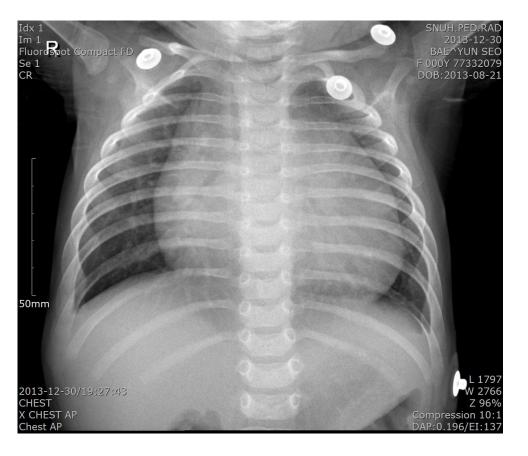

Mechanism of Action

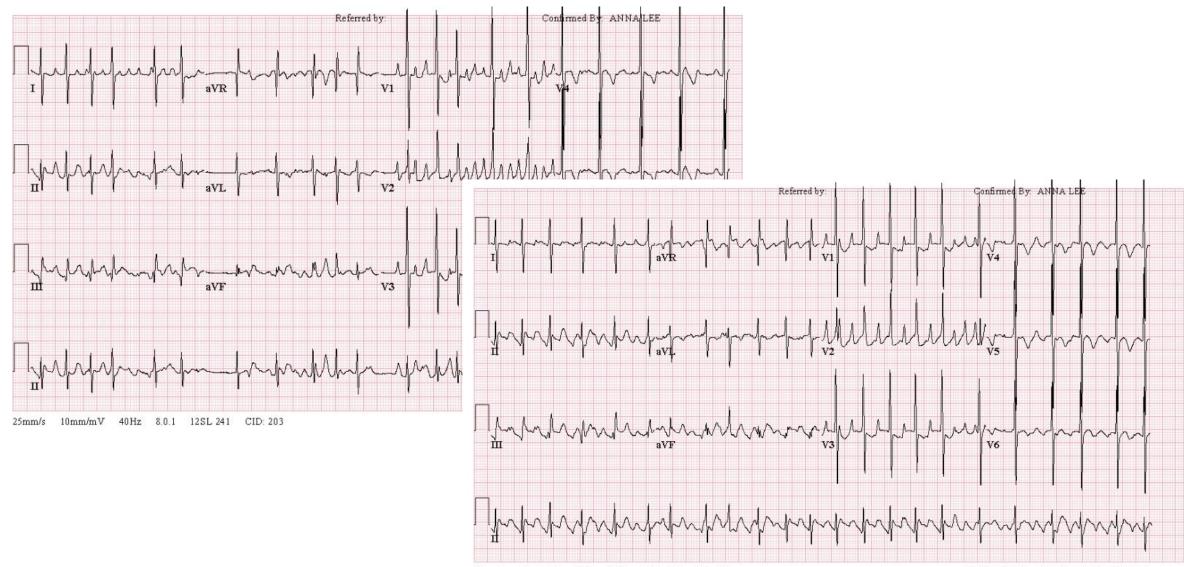
- Long Half-life: PO ~40 days, IV 9-36 days d/t prolonged terminal elimination phase
- Rapid uptake into lipophilic tissues, wide distribution to tissue (fat, muscle, highly perfused organs) → long loading periods
 - : onset of action 2days to 3 weeks
 - \rightarrow 6 weeks for full clinical effects with oral therapy.

Upon discontinuation, pharmacologic effects could continue for 1-3 months

• Iodine atoms in its molecule : structural analogue of thyroid hormone

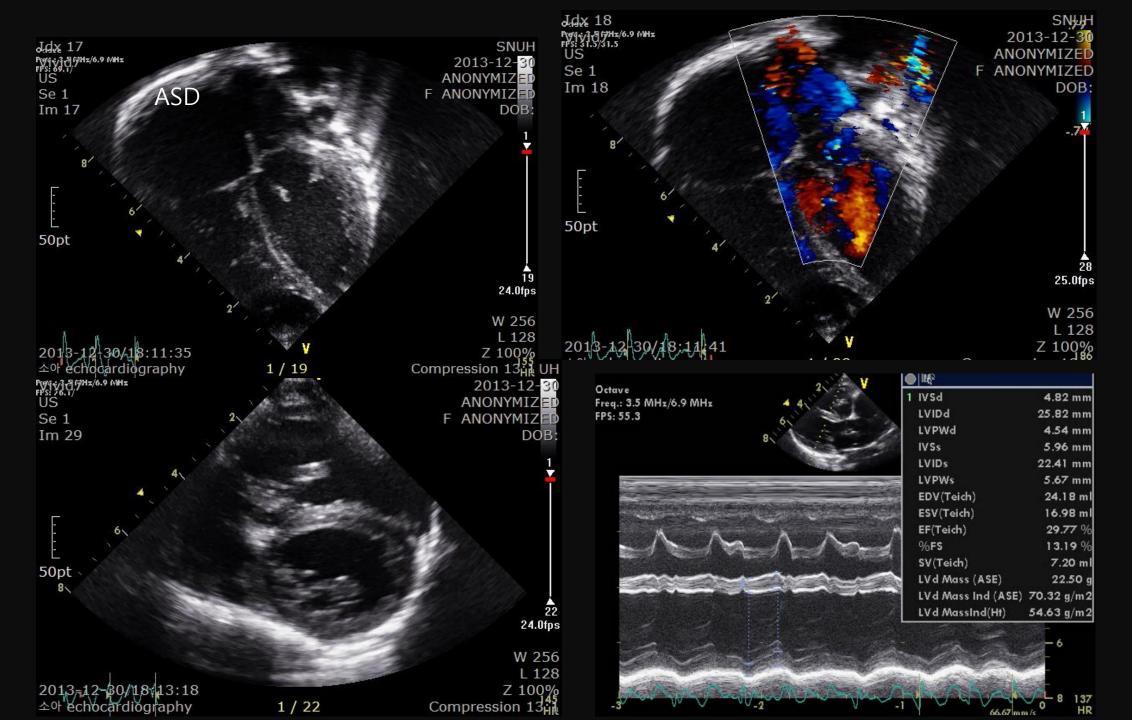
 \rightarrow may interfere with normal thyroid hormone metabolism


Amiodarone

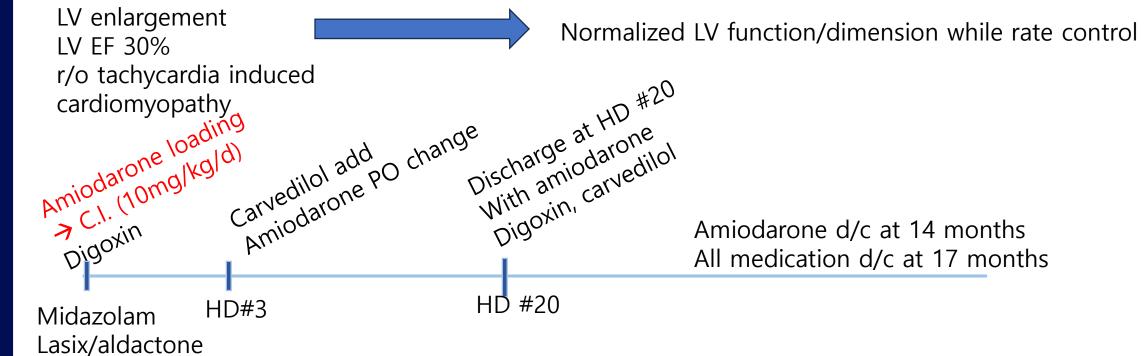

Case> 4 months/Female

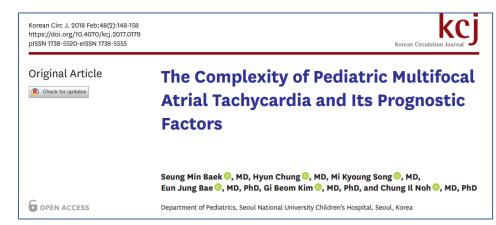
CC> poor oral intake Respiratory difficulty, tachypnea for 2-3 weeks

V/S 85/40mmHg, 145 bpm, RR 40/min, no fever


Full term, birth weight 3.4kg Current Wt 9kg

25mm/s 10mm/mV 40Hz 8.0.1 12SL 241 CID: 203


EID:21179 EDT: 16:05 05-JUL-2016 ORDER:


KHRS 2023

MAT

Multifocal AT

• Infants (m/c)

Background and Objectives: Multifocal atrial tachycardia (MAT), in general, has a favorable outcome. However, there are insufficient data regarding MAT in a pediatric population. This study sought to determine the clinical course of MAT and identify potential prognostic factors. **Methods:** The medical records of MAT patients from 1997–2015 were reviewed. The arrhythmia control rate and factors for unfavorable outcomes were assessed and compared to those in the literature.

Results: Of the 33 included patients (19 boys and 14 girls), 27 were infants less than 1 year of age. The median age at diagnosis was 1.7 months (range, 0 day to 14 years). Fourteen (42%) patients had structural heart disease. Eight (24%) patients had lung disease and 6 (18%) had a syndromic diagnosis belonging to RASopathy. Two patients developed polymorphic

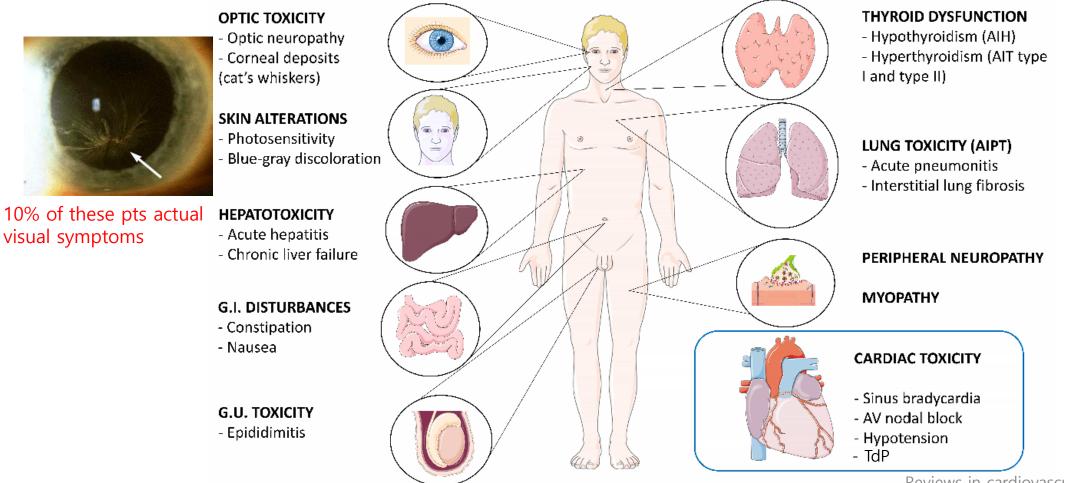
- ventricular tachycardia, in whom genetic analysis confirmed the presence of the *RyR2* mutation several years later. MAT was controlled in 26 patients (84%) within 3.9 months (median; range, 16 days–18.4 years) using an average of 2.4 medications. There were 3 cases of cardiopulmonary mortality. The arrhythmia control rate was higher in the infant group (85%)
- than in the non-infant group (67%), although this trend was not statistically significant. There was a significantly lower rate of unfavorable outcomes in the idiopathic infant group (n=11) than in the other groups (p=0.008). Considering the findings of previous studies, the mortality rate was significantly higher in patients with structural heart disease than in patients without (21% vs. 5%, p=0.01).

Conclusion: MAT usually affects infants and has a favorable prognosis, particularly in the idiopathic infant group. However, in the presence of other comorbidities, MAT may have a variable clinical course.

- 33 patients including 27 infants
- Rate control
- Beta-blocker > digoxin & amiodarone

KJC 2018;48(2):148-158

 Infants with MAT: start with digoxin or with a flecainide and propafenon, then using amiodarone as second option (Class I, B)


2013 EHRA, AEPC guideline

Indications of amiodarone

- Primary drug in pediatric resuscitation
- effective in treating both life threatening VT/VF (not associated with prolonged QTc)
- Tachyarrhythmia with Hemodynamically unstable patients and patients with congestive HF with reduced LV EF who may be adversely affected by negative inotropic or vasodilating effects of other rate-controlling agents.
- Drug refractory SVT
- Rhythm control in AF/AFL
- Postoperative junctional ectopic tachycardia

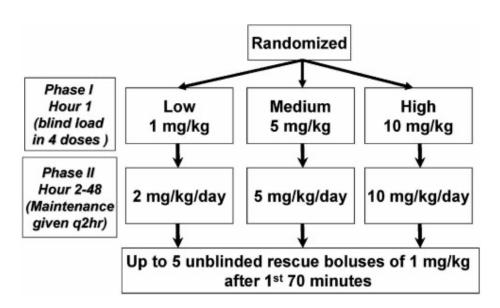
Adverse effects

• 15% within the 1st yr of use and 50% for long-term use

Reviews in cardiovascular medicine 2021;22(4):1383-1392

Intravenous Amiodarone for Incessant Tachyarrhythmias in Children

A Randomized, Double-Blind, Antiarrhythmic Drug Trial


J. Philip Saul, MD; William A. Scott, MD; Stephen Brown, MD; Pablo Marantz, MD; Valeria Acevedo, MD; Susan P. Etheridge, MD; James C. Perry, MD; John K. Triedman, MD; Susan W. Burriss, BSN, MS; Paul Cargo, RN; Jay Graepel, PhD; Eeva-Kaarina Koskelo, PhD; Rebecca Wang, MD; for the Intravenous Amiodarone Pediatric Investigators

- *Background*—Intravenous (IV) amiodarone has proven efficacy in adults. However, its use in children is based on limited retrospective data.
- *Methods and Results*—A double-blind, randomized, multicenter, dose-response study of the safety and efficacy of IV amiodarone was conducted in 61 children (30 days to 14.9 years; median, 1.6 years). Children with incessant tachyarrhythmias (supraventricular arrhythmias [n=26], junctional ectopic tachycardia [JET, n=31], or ventricular arrhythmias [n=4]) were randomized to 1 of 3 dosing regimens (low, medium, or high: load plus 47-hour maintenance) with up to 5 open-label rescue doses. The primary efficacy end point was time to success. Of 229 patients screened, 61 were enrolled during 13 months by 27 of 48 centers in 7 countries. Median time to success was significantly related to dose (28.2, 2.6, and 2.1 hours for the low-, medium-, and high-dose groups, respectively; P=0.028). There was no significant association with dose for any arrhythmia subgroup, including JET, but the subgroups were too small for an accurate assessment. Adverse events (AEs) were common (87%), leading to withdrawal of 10 patients. There were 5 deaths in the 30-day follow-up period (2 possibly related to the study drug). Dose-related AEs included hypotension (36%), vomiting (20%), bradycardia (20%), atrioventricular block (15%) and nausea (10%).

- Incessant tachy
 SVT 26, JET 31, VA 4
- Primary efficacy end point: time to success

Intravenous Amiodarone for Incessant Tachyarrhythmias in Children

A Randomized, Double-Blind, Antiarrhythmic Drug Trial

Figure 1. Overall study design. Study drug administration was divided into loading and maintenance phases.

• Median time to success:

28.2 (low-dose), 2.6 (medium-), and 2.1 hrs (high-dose)

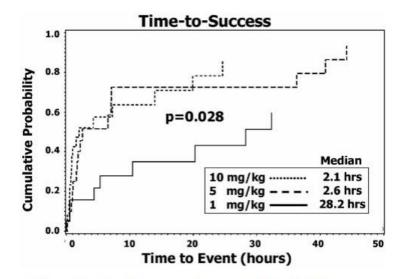


Figure 2. Time to success for the overall ITT population. Abbreviations are as defined in text.

Intravenous Amiodarone for Incessant Tachyarrhythmias in Children

A Randomized, Double-Blind, Antiarrhythmic Drug Trial

TABLE 6.	AEs b	y Dose	Group
----------	-------	--------	-------

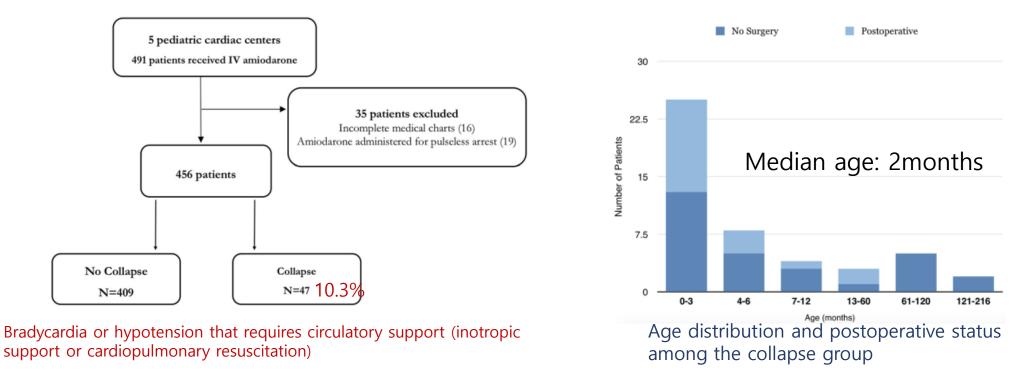
	Dose Group				
	Low (n=19)	Medium (n=20)	High (n=22)	Total (N=61)	
≥1 AE, n (%)	17 (89.5)	16 (80.0)	20 (90.9)	53 (86.9)	
Hypotension, n (%)	5 (26.3)	7 (35.0)	10 (45.5)	22 (36.1)	
Bradycardia, n (%)	0 (0.0)	6 (30.0)	6 (27.3)	12 (19.7)	
Atrioventricular block, n (%)	2 (10.5)	3 (15.0)	4 (18.2)	9 (14.8)	
Vomiting n (%)	1 (5.3)	3 (15.0)	8 (36.4)	12 (19.7)	
Nausea, n (%)	1 (5.3)	1 (5.0)	4 (18.2)	6 (9.8)	
≥1 significant AE, n (%)	6 (31.6)	8 (40.0)	10 (45.5)	24 (39.3)	
Hypotension, n (%)	0	1 (5.0)	3 (13.6)	4 (6.6)	
Bradycardia, n (%)	0	1 (5.0)	2 (9.1)	3 (4.9)	
Atrioventricular block, n (%)	1 (5.3)	1 (5.0)	1 (4.5)	3 (4.9)	

Adverse events 87% Significant AEs in 39% (BP drop, HR fall to <50% for age) Hypotension, vomiting, brady, AVB, nausea → dose related

10 patients withdrwan for significant safety issues

- 4 for hypotension
- 5 for bradycardia
- 3 for AV block
- Hepatic, thyroid, phlebitis \rightarrow not dose related

Five deaths during the 30 days FU period.


- 2 of the death (1 in the medium and 1 in the high dose) hypotensive AE

Cardiovascular Collapse with Intravenous Amiodarone in Children: A Multi-Center Retrospective Cohort Study

Khadijah Maghrabi¹ · Orhan Uzun² · Joel A. Kirsh^{3,4} · Seshadri Balaji⁵ · Nicholas H. Von Bergen⁶ · Shubhayan Sanatani⁷

Objective To determine the incidence of cardiovascular collapse in children receiving intravenous (IV) amiodarone and to identify the population at risk.

Design A multicenter study of patients ≤ 18 years of age who received intravenous amiodarone between January 2005 and December 2015. A retrospective analysis was performed to identify patients who developed cardiovascular collapse (bradycardia and/or hypotension).

Pediatric Cardiology (2019) 40:925-933

Cardiovascular Collapse with IV Amiodarone in Children: A Multi-Center Retrospective Cohort Study

• <u>Risk factors for collapse in a multivariate analysis</u>

Variable	Multivariate analysis			
	Adjusted odds ratio (95% confi- dence interval)	p value		
Age < 3 months	2.7 (1.4–5.2)	0.005		
Depressed cardiac function (EF < 35%)	4.6 (2.1–9.9)	< 0.001		
Presence of structural heart disease	0.5 (0.17-1.4)	0.18		
Postoperative arrhythmia	0.7 (0.2–1.8)	0.12		
Method of administration: bolus	7.1 (0.9–52)	0.06		
Bolus given over ≤ 20 min	2.1 (1.1-4.1)	0.01		
Blood pressure below the 3rd percentile prior to amiodarone administration	4.5 (1.7–12)	0.002		
Lactate prior to amiodarone administration > 2 mmol/L	2.0 (0.7-5.2)	0.17		

• Mortality rate

-higher in the collapse group (28% vs 8%)

The Effects of Amiodarone on Thyroid Function in Pediatric and Young Adult Patients

Brett Barrett,¹ Colin P. Hawkes,^{1,2} Amber Isaza,¹ and Andrew J. Bauer^{1,2}

¹Thyroid Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and ²Perelr Pennsylvania 19104

Amiodarone impact on thyroid function

- 1) through iodine excess-associated alterations
- 2) via direct toxicity to the thyroid gland.

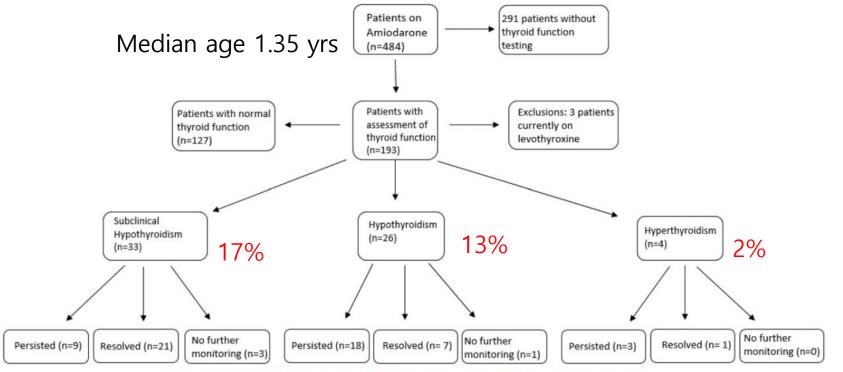


Figure 1. Patients developing subclinical hypothyroidism, AIH, and AIT and resolution.

The Effects of Amiodarone on Thyroid Function in Pediatric and Young Adult Patients

Brett Barrett,¹ Colin P. Hawkes,^{1,2} Amber Isaza,¹ and Andrew J. Bauer^{1,2}

¹Thyroid Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and ²Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

	Hyperthyroidism (n = 4)	Hypothyroidism (n = 26)	Subclinical Hypothyroidism (n = 33)			
Duration of amiodarone treatment, n (%)						
Acute, <10 days	1 (25)	3 (11.5)	6 (18.2)			
Subacute, ≥ 10 days to <3 months	2 (50)	16 (61.5)	18 (54.6)			
Chronic, \geq 3 months	1 (25)	7 (26.9)	9 (27.3)			
Days on amiodarone before thyroid	9.00 (11.8) 19.38 (32.0)		16.09 (20.6)			
dysfunction_mean (SD)						
Resolved, Conclusions: This study looks at	t a pediatric and young	g-adult population in a	n effort to describe the			
natural history of amiodarone	-induced thyroid dysf	unction. Based on our	data, we recommend			
that a complete thyroid-funct	that a complete thyroid-function panel be obtained within the first week and then at weekly					
intervals for the first 5 weeks a	intervals for the first 5 weeks after initiation. The majority of thyroid dysfunction was noted within					
the first 35 days of treatment.	(J Clin Endocrinol Me	etab 104: 5540-5546, 2	019)			

Table 3. Clinical Features of Patients Who Developed Each Type of Thyroid Dysfunction

Patterns of amiodarone-induced thyroid dysfunction in infants and children

Ana Creo, MD,* Heather Anderson, MD,[†] Bryan Cannon, MD, FHRS,[†] Aida Lteif, MD,* Seema Kumar, MD,* Peter Tebben, MD,*[‡] Anoop Mohamed Iqbal, MBBS,* Akhila Ramakrishna, MBBS,* Siobhan Pittock, MBBCh*

From the *Division of Pediatric Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota, [†]Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, and [‡]Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, Minnesota.

Table 2 Thyroid function tests in children receiving amiodarone

	Patients with TFTs checked	Patients developing an elevated TSH*	Time to first abnormal TSH (d)	Initial TSH (mIU/L)	Peak TSH (mIU/L)	FT4 at peak TSH (ng/dL)	
All patients (n = 150) Neonates (n = 27)	63 (58) 12 (44)	50.8 66.7	7 (3–19) 12 (6–20)	4.8 (2.8–8.8) 10.3 (6.8–26.4)	11.4 (6.4–23.3) 28.8 (11.4–40)	1.6 (1.2–1.8) 1.5 (1.1–1.6)	
Infants $(n = 25)$	11 (46)	36.4	4 (3–17)	4.3 (2.9-5.1)	14.3 (9.4-211.7)	1.6 (1.2–1.9)	
Young children ($n = 27$)	18 (67)	38.9	7 (5–57)	3.0 (2.3–4.9)	6.0 (5.0-8.0)	1.8 (1.6–2.4)	
Older children ($n = 71$)	23 (32)	56.5	10 (2–17)	5.9 (2.2–9.1)	9.6 8.3–18.3)	1.2(1.2-1.4)	
Short-term therapy (3-30 da	ys)						
All ages ($n = 109$)	31 (28)	54.8	5 (2–14)	5.9 (2.7-9.8)	15 (8.7–26.8)	1.35 (1.0–1.6)	
Neonates $(n = 21)$	7 (33)	57.1	6 (4–17)	9.2 (6.0-22.9)	23.5 (11.4-63.1)	1.25 (0.9–1.5)	TCH above the reference range
Infants $(n = 17)$	5 (29)	40.0	N/A	4.2 (1.1-4.4)	N/A	N/A	TSH above the reference range
Young children (n = 10)	3 (30)	33.3	N/A	2.8 (2.5-5.8)	N/A	N/A	
Older children (n = 61)	16 (26)	62.5	5 (2-11)	6.15 (2.4-9.5)	10.3 (9.2-15.6)	1.2 (1.0-1.5)	
Long-term therapy (>30 day	(s)						
All ages $(n = 41)$	32 (78)	46.9	15 (6-20)	4.5 (2.9-6.9)	8.9 (5.2-18.8)	1.6 (1.4-2.3)	
Neonates $(n = 6)$	5 (83)	80.0	17 (7–20)	11.4 (7.5-25.6)	28.8 (11.4-34.4)	1.85 (1.6-2.1)	
Infants $(n = 8)$	6 (75)	33.3	4 (3–17)	4.6 (3.3-5.3)	14.3 (9.4–211.7)	1.6 (1.2-1.9)	
Young children (n = 17)	15 (88)	40.0	7 (5–57)	3.1 (2.3-4.8)	6.0 (5.0-8.0)	1.8(1.6-2.4)	
Older children $(n = 10)$	7 (70)	42.9	19 (18–30)	4.4 (2.2–7.7)	8.9 (5.2-16.1)	1.3 (1.3-1.4)	

*In patients who had thyroid testing performed.

Patterns of amiodarone-induced thyroid dysfunction in infants and children

Ana Creo, MD,* Heather Anderson, MD,[†] Bryan Cannon, MD, FHRS,[†] Aida Lteif, MD,* Seema Kumar, MD,* Peter Tebben, MD,*[‡] Anoop Mohamed Iqbal, MBBS,* Akhila Ramakrishna, MBBS,* Siobhan Pittock, MBBCh*

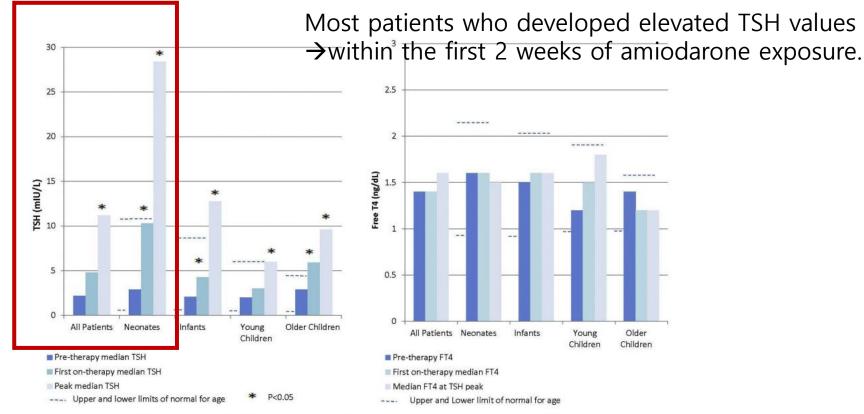


Figure 1 Thyroid function tests by age. FT4 = free thyroxine; TSH = thyroid-stimulating hormone.

Amiodarone-induced thyroid dysfunction in children

- Adequate thyroid hormone levels on brain development in the first 3 years of life
- \rightarrow Rigorous thyroid function test monitoring is required in these population

	Amiodarone-induced hypothyroidism
Timing of onset	Early (within weeks of amiodarone use)
Risk factors	lodine sufficient region, female, underlying Hashimoto's thyroiditis
Diagnosis	Elevated TSH greater than 10 mIU/I with low-fT4
Treatment	Levothyroxine – lower starting dose with slow dose escalation to decrease the risk of precipitation or exacerbating arrhythmia. Coal is normalization of TSH.
Screening recommendations for amiodarone-induced thyroid dysfunction in pediatrics	 Baseline TSH, free T4, T3 and reverse-T3 (rT3) Weekly TSH, FT4, T3, and rT3 for the first 5 weeks after initiation of amiodarone. If thyroid dysfunction is not detected in the first 5 weeks, then thyroid-function testing could then be performed less frequently, such as every 1–3 months, with decreasing frequency based on results and clinical status Thyroid autoantibodies (antithyroglobulin and antithyroid peroxidase) for patients older than 2 years of age

 Table 1. Amiodarone-induced hypothyroidism screening diagnosis, screening recommendations and treatment

<u>Summary</u>

- Amiodarone is a potent antiarrhythmic drug
- Effective in the patients with life-threatening incessant tachycardias, postop junctional tachycardia, and incessant SVT
- Neonates and infants were prone to developing complications
- Caution and careful hemodynamic monitoring is recommended when

using IV amiodarone, especially in young infants, hemodynamically compromised patients, and in patients receiving rapid amiodarone bolus administration.

• Thyroid function abnormalities is common complication in infants.

Baseline and weekly TFT for the first 5 weeks after initiation of amiodarone is recommended